NPR

'Genius Grant' Winners Keep It Simple

It could be a burden to be tagged with the label "genius." But to win $500,000 over five years, with no strings attached, might lighten that burden.

On Tuesday, 25 winners of this year's MacArthur awards — which have come to be known as "genius grants" — found themselves considering that new reality.

The winners were chosen for their creativity and their efforts to "make our world a better place," according to the John D. and Catherine T. MacArthur Foundation.

Other 2008 Fellows

Chimamanda Adichie, 31
A novelist from Nigeria who wrote Half Of A Yellow Sun.

Will Allen, 59
An urban farmer for Growing Power, Inc., in Milwaukee.

Regina Benjamin, 51
Rural family physician in Bayou La Batre, Ala.

Kirsten Bomblies, 34
Plant evolutionary geneticist in Tubingen, Germany.

Tara Donovan, 38
A sculptor in Brooklyn, N.Y.

Wafaa El-Sadr, 58
Infectious disease physician at Columbia University in New York.

Andrea Ghez, 43
Astrophysicist at the University of California at Los Angeles.

Stephen Houston, 49
Anthropologist/epigrapher at Brown University in Providence, R.I.

Mary Jackson, 63
Fiber artist in Charleston, S.C.

Leila Josefowicz, 30
Violinist in New York.

Alexei Kitaev, 45
Physicist/computer scientist with the California Insitute of Technology.

Susan Mango, 47
Developmental biologist at the University of Utah.

Diane Meier, 56
Geriatrician at the Mount Sinai School of Medicine in New York.

David Montgomery, 46
Geomorphologist at the University of Washington in Seattle.

John Ochsendorf, 34
Structural engineer/architectural preservationist at MIT in Cambridge, Mass.

Peter Pronovost, 43
Critical care physician at the Johns Hopkins University School of Medicine in Baltimore.

Adam Riess, 38
Astronomer at the Johns Hopkins University in Baltimore.

Alex Ross, 40
Music critic for The New Yorker magazine.

Nancy Siraisi, 76
Historian of medicine in Brooklyn, N.Y.

Marin Soljacic, 34
Optical physicist at MIT.

Sally Temple, 49
Neuroscientist at the New York Neural Stem Cell Institute in Albany, N.Y.

Jennifer Tipton, 71
Stage lighting designer in New York.

Miguel Zenon, 31
Saxophonist in New York.

Two of the winners spoke with host Melissa Block about their work and why they are so passionate about it.

Unlocking The Sense Of Smell

A neurobiologist who is trying to unlock some of the mysteries of our sense of smell, Rachel Wilson teaches at Harvard Medical School.

"Something that is interesting about olfaction is it seems to have a very intimate connection with the sense of emotion and memory," Wilson says. "We're interested in why it is that it seems to be such a visceral and emotional sensory modality."

Wilson, 34, says her lab studies the sense of smell in fruit flies, which sounds "a little wacky," because fruit flies have brains the size of a poppy seed.

"We're monitoring electrical activity from individual brain cells," she says, "and meanwhile, we're puffing different odors on the fly — odors that smell like fruits or represent pheromones."

The scientists study why a fruit fly responds to one odor and not another. Fruit flies like the smell of ripe mangoes, Wilson says.

Ultimately, the lab would like to compare the computations that occur in the olfactory systems with those in the senses of hearing and taste.

"It's part of a deeper question about whether different parts of your brain are very highly specialized for the tasks that they perform, or whether on the other hand, your brain is a bunch of useful matter, and you can just plug all kinds of information into it willy-nilly, and it will kind of do the right thing."

Wilson says another application of her research is in the development of artificial noses that are designed to "detect and discriminate between large numbers of odor molecules in the air around you."

These odors can help with environmental protection and medical diagnosis. According to Wilson, lung cancer patients "seem to have a characteristic fingerprint of odors in their breath that can be detected by a machine, not so well by a doctor."

Says Wilson of the fruit flies: "Sometimes, the simplest creatures give us the greatest insights."

The Sound Artist

Walter Kitundu, 35, is a multimedia artist, composer and builder who creates hybrid instruments out of turntables and strings.

One such instrument he created is the Blue Steel String 1200 Phonoharp, which uses the turntable to pick up vibration.

"Many people for years have been trying to isolate the turntable from vibration, precisely because it's so good at picking it up," Kitundu says. "So I turned that on its head. When I pluck the strings of the phoneharp, the vibrations are actually varied into the body of the turntable, and they're amplified by the cartridge."

Depending on the instrument, Kitundu will pluck the strings or blow them. He says because they're so sensitive, they can be used as both percussive and melodic instruments.

Some of his instruments are inspired by traditional instruments like the Japanese koto or the West African cora, he says, while others he imagines.

"I build them, and I find out what they sound like after they're built," he says.

Born and raised in Tanzania, Kitundu says he was always taking things apart as a kid.

"I've blown up a couple of turntables in the process of making new things, but those have always been great learning processes," he says. "I call it trial and terror."

Kitundu also says he likes going to flea markets and finding ways to creatively reuse things he finds.

"I find that if you limit your palette and you limit your tools, you have to think more creatively about how to use them," he says. "And sometimes that leads to novel solutions."

Copyright 2014 NPR. To see more, visit http://www.npr.org/.

Transcript

MICHELE NORRIS, Host:

From NPR News, this is All Things Considered. I'm Michele Norris.

MELISSA BLOCK, Host:

And I'm Melissa Block. It would be a burden, we think, to be tagged with the label of genius. Not such a burden to get half a million dollars with no strings attached. Well, 25 winners of this year's McArthur Awards, which have come to be known as genius grants, are considering that new reality. The winners were announced today. They're chosen for their creativity and their efforts to - as the foundation puts it - make our world a better place. We're going to hear from two of the winners now.

In a moment, a sound artist who creates hybrid instruments out of turntables, strings, even waves and fire. But first, to a neurobiologist who's trying to unlock some of the mysteries of our sense of smell. Rachel Wilson teaches and does research at Harvard Medical School. I asked her why she's so enamored of this particular sense.

D: You know, olfaction is a sense that has intrigued people for a long time, including writers and artists. Something that's interesting about olfaction is that it seems to have a very intimate connection with the sense of emotion and memory. It's also interesting to think about the fact that we can perceive many different molecules in the air, but we do this by way of a very limited number of receptors. So our perception of an odor must consist of the combination of receptors that are activated. And my lab is interested, in part, in how this kind of combination code is decoded by the brain.

BLOCK: And this is, I think, the part that is taking you deep into the mind of a fruit fly.

D: We study the sense of smell in fruit flies, which sounds a little wacky, especially when you think about the fact that the brain of this organism is only about the size of a poppy seed.

BLOCK: And give me a sense of what you're doing in the lab with these fruit flies in trying to figure out how they're sensing smell.

D: We're monitoring electrical activity from individual brain calls. And meanwhile, we're puffing different odors on the fly - odors, sometimes, that smell like different fruits, or that represent pheromones for the fly. And we're looking at how an individual brain cell responds to different odors. A cell will show a particular tuning. That is, it will respond to one odor and not the other. And we're comparing the tuning of different groups of cells at different levels in the olfactory system. As information passes from sensory cells that are actually contacting odors deep into the brain, there must be a series of computations that are going on, processing events. We want to know what is going on there and how it happens.

BLOCK: I feel like I almost understand that.

(SOUNDBITE OF LAUGHTER)

D: It's not rocket science. It's only brain science.

(SOUNDBITE OF LAUGHTER)

BLOCK: Have you found that there's one scent, one smell that the flies respond to more than others?

D: They really like the smell of ripe mangoes, I'll tell you that.

BLOCK: Really?

D: Yeah.

BLOCK: I like that smell, too. It's something I have in common with a fruit fly.

D: It's an attractive odor. That's right. That's right.

BLOCK: Do you have a sense of where this research might lead? Are there pathways from scent and smell into other areas, other senses that you might be finding out about?

D: One thing that we'd really like to do is to compare the very first processing steps or computations that occur in the olfactory system with very early processing steps that happen in other sensory modalities. An application of our research is in the development of artificial noses. These are devices that are designed to detect and discriminate between large numbers of odor molecules in the air around you.

Artificial noses are exciting because they have a lot of potential applications in environmental protection and also in medical diagnosis. For example, lung cancer patients seem to have a characteristic sort of fingerprint of odors in their breath that can be detected by a machine, not so well by a doctor.

BLOCK: Wow, fascinating, and all going back to the fruit fly at some level?

D: That's right. Well, sometimes the simplest creatures give us some of the greatest insights.

BLOCK: Well, Rachel, again, congratulations.

D: Thank you very much.

BLOCK: That's neurobiologist Rachel Wilson of Harvard Medical School. And now to another of this year's McArthur winners: multimedia artist, composer and a builder, Walter Kitundu. He joins us from San Francisco. Pretty exciting week, I guess.

NORRIS: Yeah. It's been a thrilling week.

BLOCK: I can imagine. Well, let's start by listening to one of your compositions on an instrument that you created called the Blue Steel String 1200 Phonoharp. Here's a bit.

(SOUNDBITE OF MUSIC)

BLOCK: Can you explain for us a bit how the Phonoharp works?

NORRIS: The Phonoharp actually uses the propensity of the turntable to pick up vibration. Like, many people for years have been trying to isolate the turntable from vibration precisely because it's so good at picking it up. So I've turned that on its head a bit. And when I pluck the strings of the Phonoharp, the vibrations are actually varied into the body of the turntable, and they're amplified by the cartridge.

BLOCK: I've seen pictures of this. It's a little hard to describe, but you have a turntable in a big case. There are strings in different configurations depending on the different instruments that you've created, and you're using them both to pluck, sometimes to bow, and also you're getting percussive effects.

NORRIS: Yeah, because the instruments are so sensitive, you can play them as percussive instruments as well as melodic instruments. And some of them are inspired by traditional instruments like the Japanese koto or the West African cora. But some of them just spring from my imagination. And I build them and try to - I find out what they sound like after they're built.

BLOCK: I'm going to listen to another song, and this one is on the Phonocora. It's just beautiful. Let's take a listen.

(SOUNDBITE OF MUSIC)

BLOCK: And a really different sound here, Walter. And we're hearing there a little scratching on the turntable, sort of a hip-hop influence coming in.

NORRIS: Yeah, definitely. The hip-hop influence is there. And the sound that I'm scratching is actually a Japanese Shakuhachi flute, a bamboo flute, and the instrument is the West African cora-inspired Phonocora.

BLOCK: You know, I'm curious. You were born and raised in Tanzania. Were you always a kid who was putting things together, taking them apart?

NORRIS: I was always a kid who was taking things apart.

(SOUNDBITE OF LAUGHTER)

BLOCK: I see.

NORRIS: And the putting things together came a bit later. And, you know, I've blown up a couple of turntables in the process of trying to make them into new things, but those have all been great learning processes. I call it trial and terror.

(SOUNDBITE OF LAUGHTER)

BLOCK: I see. Well, I guess you have a little more money to spend on some replacements now.

NORRIS: Yeah, that's true. Well, but at the same time, I really like going to flea markets and finding things and adaptively reuse them, you know, creatively reuse them. And I find that if you limit your palette and you limit your tools, you have to think more creatively about how to use them, and sometimes that leads to novel solutions.

BLOCK: Well, Walter, congratulations again on the McArthur.

NORRIS: Thank you so much.

BLOCK: That's sound artist Walter Kitundu in San Francisco. We also heard from neurobiologist Rachel Wilson in Boston, two of this year's 25 winners of McArthur grants. If you're wondering how old they are, they are 35 and 34, respectively.

(SOUNDBITE OF MUSIC)

BLOCK: And to hear and see but unfortunately, not smell more of the work of these genius award winners, go to npr.org. Transcript provided by NPR, Copyright NPR.

Most Popular